Птолемей Клавдий
Клавдий Птолемей
Птолемей, а полностью - Клавдий Птолемей (Claudius Ptolemaeus) родился между 127-145 гг. нашей эры в Александрии (Египет), древний астроном, географ и математик, считавший Землю центром вселенной ("Птолемеева система"). К сожалению, о его жизни в настоящее время известно очень мало. (За исключением того, что династия Птолемеев утвердилась в Египте в результате завоеваний Александра Македонского, который отдал Египет в награду одному из своих выдающихся военачальников. Известная Египетская царица Клеопатра также носила фамилию Птолемей. - С.А.Астахов.)
Результаты его работ по астрономии были сохранены в его большой книге "Mathematike syntaxis" ("Математический Сбор"), которая, в конечном счете, становится известной как "Ho megas astronomos" ("Большой астроном"). Однако для ссылок на эту книгу в 9-м столетии арабские астрономы использовали греческий термин "Megiste" ("превосходный"). Когда определенный арабский артикль "al" (другое значение - " как", по-английски - "like") был записан слитно, название становится известным как "Almagest" ("Альмагест"), которое используется и сегодня.
Альмагест подразделяется на 13 отдельных томов, каждый из которых рассматривает определенное астрономическое понятие, относящееся к звездам и объектам солнечной системы (Земля и все другие небесные тела, относящиеся к Солнечной системе). Без всяких сомнений, Альмагест является энциклопедией природы, что и сделало его таким полезным для многих поколений астрономов и оказало на них глубочайшее влияние. В сущности, это синтез полученных Древнегреческой астрономией результатов, а также основной источник сведений о работах Гиппарха, по-видимому, являвшимся величайшим астрономом древности. В книге часто трудно определить, какие сведения принадлежат Птолемею, а какие Гиппарху, потому что Птолемей значительно дополнил данные Гиппарха своими собственными наблюдениями, по всей видимости, пользовавшись аналогичными или похожими инструментами. Например, если Гиппарх скомпоновал свой звездный каталог (первый такого типа) на основе данных о 850-ти звездах, то Птолемей расширил число звезд в его собственном каталоге до 1,022.
Птолемей снова и снова повторял наблюдения движений Солнца, Луны и планет Солнечной системы и корректировал данные Гиппарха - на этот раз для того, чтобы сформулировать собственную геоцентрическую теорию, которая в настоящее время известна в качестве Птолемеевой модели строения солнечной системы. В первой книге Альмагеста Птолемей подробно описывает эту геоцентрическую систему и пытается с помощью различных аргументов доказать, что в центре вселенной должна находится неподвижная Земля. Необходимо отметить его весьма последовательное доказательство, что в случае движения Земли, как это предполагали до этого некоторые из греческих философов, с течением времени на звездном небе проявятся и должны быть обнаружены некоторые явления, в частности параллаксы звезд. С другой стороны, Птолемей доказывал, что, поскольку все тела падают в центр вселенной, именно Земля и должна быть там расположена в соответствии с направлениями свободно падающих капель воды. Более того, если Земля не центр, тогда она должна вращаться с периодом в 24 часа, и, следовательно, тела, брошенные вертикально вверх, не должны падать на то же самое место, как это имеет место на практике. Птолемей смог доказать, что к тому времени не было получено ни одного противоречащего этим аргументам наблюдения. В результате геоцентрическая система стала абсолютной истиной для западного христианского мира вплоть до 15-го столетия, когда была вытеснена гелиоцентрической системой, разработанной великим польским астрономом Николаем Коперником.
Птолемей установил следующей порядок для объектов Солнечной системы: Земля (центр), Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн. Для объяснения неравномерностей движения этих небесных тел ему, точно так же, как и Гиппарху, потребовалась система дифферентов и эпициклов или один из подвижных эксцентров (обе системы разработаны Аполлоном из Пергама, греческим геометром 3-го столетия до нашей эры), чтобы описывать их перемещения только и исключитеьно с помощью равномерного движения по окружностям.
В Птолемеевой системе дифференты являются большими кругами с центром на Земле, а эпициклы - круги меньшего диаметра, центры которых равномерно перемещаются по окружностям дифферентов. При этом Солнце, Луна и планеты перемещаются по окружностям своих собственных эпициклов. Или, для подвижного эксцентра существует окружность с центром, смещенным относительно Земли в сторону планеты, перемещающейся вокруг этой окружности. Обе схемы являются математически эквивалентными. Но даже с введением этих понятий могли быть объяснены еще не все наблюдавшиеся элементы движения планет. Введя в астрономию еще одно понятие, Птолемей с блеском показал свою гениальность. Он предположил, что Земля должна быть расположена на некотором расстоянии от центра дифферента для каждой планеты и, что центр планетарного дифферента и эпицикла для принятого равномерного циклического движения является воображаемой точкой, лежащей между местоположением Земли и другой воображаемой точкой, которую он назвал эквантом. При этом Земля и эквант лежат на одном диаметре соответствующего планетарного дифферента. Кроме того, он считал, что расстояние от Земли до центра дифферента должно быть равно расстоянию от центра дифферента до экванта. При помощи этой гипотезы Птолемей смог гораздо точнее объяснить множество наблюдавшихся элементов планетных движений.
В Птолемеевой системе плоскость эклиптики является явным солнечным годовым путем на фоне звезд. Следует положить, что плоскости дифферентов планет наклонены на небольшие углы относительно плоскости эклиптики, но плоскости их эпициклов должны быть наклонены на те же самые углы относительно дифферентов, чтобы плоскости эпициклов всегда были параллельными плоскости эклиптики. Плоскости дифферентов Меркурия и Венеры выбирались такими, чтобы обеспечить колебания этих планет относительно плоскости эклиптики (выше - ниже), и, следовательно, плоскости их эпициклов были подобраны, чтобы обеспечить соответствующие колебания уже относительно их дифферентов.
Однако, еще необходимо было объяснить так называемое ретроградное (обратное) движение, которое периодически наблюдалось в виде явных обратных петель траекторий внешних планет на фоне звезд (для Марса, Юпитера и Сатурна).
Хотя Птолемей и понимал, что планеты располагаются значительно ближе к Земле, чем "фиксированные" или "неподвижные" звезды, он, по всей видимости, верил в физическое существование "кристаллических сфер", к которым - как тогда говорили - прикреплены все небесные тела. За пределами сферы неподвижных звезд, Птолемей предполагал существование других сфер, заканчивающихся связью с "primum mobile" ("первичным движителем" - может быть, Богом?), который и обладал необходимой мощностью для обеспечения движения остальных сфер, составляющих всю наблюдаемую вселенную.
Как, в первую очередь, геометр, Птолемей выполнил несколько важнейших математических работ. Разработанные им новые геометрические теоремы и доказательства он изложил в книге, названной "Аналемма" ("Peri analemmatos" - греч., "De analemmate" - лат.), где подробно обсудил свойства проекций точек на небесную сферу (воображаемая сфера, расширяющаяся наружу с Земли для бесконечности, на поверхность которой проецируются расположенные в пространстве объекты), в частности, на три плоскости, расположенных между собой по правилу правого винта ("буравчика", если исходить из школьного учебника физики) под прямыми углами друг к другу - горизонт, меридиан, и первичная вертикаль. В другой книге - "Planisphaerium" - Птолемей имеет дело со стереографическим проекциями - вычерчиванием проекций твердого тела на плоскость - однако, и здесь он использовал южный полюс небесной сферы в качестве центра своих проекций. (Точка пересечения линий проекций используется для получения перспективных искажений, например, в аксонометрических проекциях.)
Кроме того, Птолемей разработал собственный календарь, который, кроме предсказаний погоды, указывал времена восходов и заходов звезд в утренние и вечерние сумерки. Другие математические публикации содержат работу (в двух томах), носящую название "Hypotheseis ton planomenon" ("Планетарная гипотеза"), и две отдельных геометрических публикации, одна из которых содержит обоснование существования не более чем трех измерений пространства; в другой он предпринимает попытку доказательства постулата о параллельных Эвклида. Согласно одному обзору Птолемей написал три книги по механике; другое руководство, тем не менее, упоминает только об одной - "Peri ropon" ("О балансировке").
Работы Птолемея в области оптических явлений были зафиксированы в "Оптике" ("Optica"), оригинальное издание которой состояло из пяти томов. В последнем томе он работает с теорией преломления (изменение направления света и других энергетических волн при переходе ими границы раздела среды с одной плотностью в среду с другой плотностью) и при этом обсуждает изменения местоположения небесных светил в зависимости от высоты стояния над горизонтом. Это было первой документальной попыткой объяснения реально наблюдаемого явления (атмосферной рефракции). Следует упомянуть и о трехтомной монографии Птолемея о музыке, известной, как "Гармоника" ("Harmonica").
Репутация Птолемея, как географа, зиждется, главным образом, на его "Geographike hyphegesis" ("Справочнике по географии"), который был подразделен на восемь томов; и которые содержали информацию о том, как создавать карты и списки мест в Европе, Африке и Азии и создавать таблицы местоположения географических объектов по широте и долготе. Отметим, тем не менее, что в Руководстве было и много ошибок - например, экватор был установлен слишком далеко к северу, а величина окружности Земли была почти 30 процентов меньше той, которая, строго говоря, уже была достаточно точна определена (Эратосфеном); также существовали некоторые противоречия между текстом и картами. Конечно же, Руководство в целом не может считаться "хорошей географией", потому что Птолемей ничего не упоминает о климате, природных условиях, жителях или специфических характеристиках стран, с которыми он имеет дело. Также небрежны его географические проработки таких объектов, как реки и горные области. Т.е. работа получилась весьма ограниченного применения. |