Астрономия для любителя Астрономия
Главная
Новости

Астрономия

Солнечная система

Звездное небо

Читальный Зал

Ссылки

Карта сайта



e-mail для связи:
admin(на)astronomus.ru


ГЛАВА 3. ГОРЯЧАЯ ВСЕЛЕННАЯ

ФИЗИКА НАЧАЛА РАСШИРЕНИЯ

В предыдущих главах мы познакомились с механикой расширения Вселенной. Но механика не исчерпывает всего, что нас интересует. На разных этапах расширения Вселенной в ней протекали различные физические процессы. Мы знаем, что 15 миллиардов лет назад, в начале расширения, плотность материи во Вселенной была огромна. Естественно, что тогда протекали физические процессы, совсем непохожие на те, что мы наблюдаем сегодня. Они в прошлом определили сегодняшнее состояние мира и сделали возможным, в частности, существование жизни.

Физика процессов в начале расширения вызывает огромный интерес. Но можем ли мы что-либо сказать об этих процессах? Ведь речь идет буквально о первых мгновениях расширения, а все это происходило 15 миллиардов лет назад!

Оказывается, можем.

Дело в том, что происходившие в первые секунды с начала расширения процессы имели столь важные последствия для сегодняшней Вселенной, оставили столь явные “следы”, что по ним можно восстановить характер самих процессов.

Важнейшими из них были ядерные реакции между элементарными частицами, проходившие при большой плотности. Такие реакции возможны лишь

в самом начале расширения, когда плотности огромны. Конечно, никаких нейтральных атомов и даже сложных атомных ядер тогда не было, химические элементы образовались позднее в результате ядерных реакций. Но до этого, в еще более ранней Вселенной, был период, когда образовались сами элементарные частицы. Здесь речь идет уже о временах, исчисляемых невообразимо малыми мгновениями — 10-43 секунды, когда плотности были больше 1093 г/см3. Такая плотность в невообразимое число раз больше плотности атомного ядра, которая “всего” 10-15 г/см3. Наверное, столь обескураживающие числа вызывают невольную улыбку у читателя. Разве можно что-либо узнать о процессах в таких условиях, которые абсолютно невоспроизводимы в земных лабораториях?

Много лет назад, когда мы писали научную монографию с академиком Я. Зельдовичем и приводили в ней классификацию процессов, протекавших в подобных условиях чудовищных плотностей, мы вспомнили пародию Аркадия Аверченко: “История мидян темна и неизвестна, ученые делят ее тем не менее на три периода:

первый, о котором ничего не известно; второй — о котором известно почти столько же, сколько о первом, и третий, который последовал за двумя предыдущими”.

За прошедшие с тех пор почти двадцать лет физика шагнула далеко вперед, и теперь даже о процессах формирования элементарных частиц в расширяющейся Вселенной уже можно кое-что сказать.

Что же касается ядерных реакцией, происходивших с первой по трехсотую секунды после начала расширения, то о них можно поведать почти все с полной определенностью. Дело в том, что следствием ядерных реакций явилось образование химических элементов во Вселенной.

Расчет ядерных реакций дает возможность предсказать химический состав вещества, из которого формируются галактики, звезды, межзвездный газ. Сравнение предсказания с наблюдениями позволяет выявить эти реакции, а главное — выяснить физические условия, в которых они происходили. Мы оставим до дальнейших параграфов выяснение вопроса об экзотических процессах при 1093 г/см3, и посмотрим сначала, как протекали ядерные реакции во Вселенной в первые секунды и к чему они привели.

ХОЛОДНОЕ ИЛИ ГОРЯЧЕЕ НАЧАЛО?

Есть две принципиальные возможности для условий, в которых протекало начало расширения вещества Вселенной. Это вещество могло быть либо холодным” либо горячим. Мы увидим, что следствия ядерных реакций при этом в корне отличаются друг от друга. Исторически первым еще в 30-е годы нашего века была рассмотрена возможность холодного начала. Тогда ядерная физика находилась еще в зачаточном состоянии, не было теории, которая могла бы надежно рассчитать ядерные реакции. В этих условиях принималось, что вещество Вселенной было сначала в виде холодных нейтронов.

Позже выяснилось, что такое предположение приводит к противоречию с наблюдениями.

Дело заключается в следующем. Нейтрон — нестабильная частица. В свободном состоянии он распадается за время около 15 минут на протон, электрон и антинейтрино. Поэтому в ходе расширения Вселенной нейтроны стали бы распадаться, стали бы возникать протоны. Возникший протон стал бы соединяться с еще оставшимся нейтроном, давая ядро атома дейтерия. Затем дейтерий стал бы соединяться с дейтерием и так далее. Реакция усложнения атомных ядер стала бы быстро идти и продолжаться до тех пор, пока не образовалась бы альфа-частица — ядро атома гелия. Более сложные атомные ядра, как показывают расчеты, практически не возникали бы. Таким образом, все вещество превратилось бы в гелий. Этот вывод резко противоречит наблюдениям. Известно, что молодые звезды и межзвездный газ состоят в основном из водорода, а не из гелия.

Таким образом, наблюдения распространенности химических элементов в природе отвергают гипотезу о холодном начале расширения Вселенной.

В 1948 году появилась работа Г. Гамова, Р. Альфера и Р. Хермана, в которой предлагался “горячий” вариант начальных стадий расширения Вселенной. Предполагалось, что в начале расширения температура вещества была весьма велика.

Основная цель авторов гипотезы горячей Вселенной заключалась в том, чтобы, рассматривая ядерные реакции в начале космологического расширения, получить наблюдаемое в настоящее время соотношение между количеством различных химических элементов и изотопов.

Почему первоначально предполагалось, что все химические элементы должны образоваться в начале расширения Вселенной? Дело в том, что в 40-е годы ошибочно считали, что время, протекшее с начала расширения, составляет 1—4 миллиарда лет (вместо 15 миллиардов лет по современным оценкам). Как мы знаем, это было связано с заниженными оценками расстояний до галактик и поэтому с завышением постоянной Хаббла. Сравнивая это время (1—4)*109 лет с возрастом Земли — порядка (4—6)*109 лет, авторы предполагали, что даже Земля и планеты (не говоря уже о Солнце и звездах) сконцентрировались из первичного вещества, и все химические элементы образовались на ранней стадии расширения Вселенной, ибо больше они нигде не успевали образоваться.

Теперь мы знаем, что время расширения Вселенной 15*109 лет. Земля образовалась не из первичного вещества, а из вещества, прошедшего стадию ядерных реакций (нуклеосинтеза) в звездах. Теория нуклеосинтеза в звездах успешно объясняет основные законы распространенности элементов в предположении, что первые звезды образовались из вещества, состоящего главным образом из смеси водорода и гелия. Вещество из старых звезд первого поколения, обогащенное тяжелыми элементами, выбрасывалось в пространство. Из этого вещества возникали новые звезды, планеты. Таким образом, необходимость объяснения происхождения всех элементов (в том числе и тяжелых — железа, свинца и т. д.) на ранней стадии расширения Вселенной отпала. Но суть гипотезы горячей Вселенной оказалась правильной.

Многие исследователи отмечали, что содержание гелия в звездах и газе нашей Галактики гораздо больше, чем это можно объяснить нуклеосинтезом в звездах. (Подробнее об этом говорится далее.) Следовательно, синтез гелия должен происходить на раннем этапе расширения Вселенной. Но все же основным веществом Вселенной и сейчас является водород.

В теории, предложенной Г. Гамовым и его соавторами, оказывается, что расширяющееся вещество Вселенной превращается в смесь, большая часть которой составляет водород (70 процентов) и меньшая — гелий (30 процентов). Из этого вещества позже и формируются звезды и галактики. Почему же в теории горячей Вселенной все вещество не превращается в гелий, как это было в варианте начала в виде холодной нейтронной жидкости?

Все дело именно в том, что вещество было горячим. В горячем веществе имеется много энергичных фотонов.

Имеются там также протоны и нейтроны, которые стремятся соединиться в дейтерий. Однако фотоны разбивают дейтерий, который образуется при слиянии протона и нейтрона, обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Когда Вселенная, расширяясь, досаточно охлаждается (до температуры- меньше миллиарда градусов), то некоторое количество дейтерия уже сохраняется и приводит к синтезу гелия. Мы подробно рассмотрим этот процесс далее.

Теория горячей Вселенной дает определенные предсказания о содержании гелия в дозвездном веществе. Как уже упоминалось, распространенность гелия должна быть около 30 процентов по массе.

На гипотезе Гамова исследования разных вариантов начала расширения Вселенной не закончились. В начале 60-х годов были сделаны попытки вернуться к модернизированному варианту холодной Вселенной, который предсказывал превращение всего вещества не в гелий (как в прежнем варианте), а в чистый водород. При этом предполагалось, что остальные элементы формировались гораздо позже уже в звездах.

Первоначально теории горячей и холодной Вселенной связывались с попытками дать полное объяснение распространенности химических элементов в дозвездном веществе. Попытки выяснить, какая теория верна, сначала направлялись в основном по пути анализа наблюдений распространенности химических элементов. Однако такие наблюдения и в особенности их анализ очень сложны и зависят от многих предположений. Если бы теории можно было проверять только по распространенности химических элементов во Вселенной, то выявить истину было бы сложно. Ведь не так-то просто разобраться, сколько гелия и других элементов синтезировано в ядерных процессах в звездах, а сколько осталось от процессов в ранней Вселенной.

К счастью, есть другой способ проверки. Теория горячей Вселенной дает важнейшее наблюдательное предсказание, которое является прямым следствием “горяче-сти”. Это предсказание существования во Вселенной в нашу эпоху электромагнитного излучения, оставшегося от той эпохи, когда вещество в прошлом было плотным и горячим.

В процессе космологического расширения вещества температура его падает, падает и температура излучения, но все же и к настоящему моменту должно остаться

электромагнитное излучение с температурой (в разных вариантах теории) от долей градуса до 20—30 градусов по Кельвину (физики говорят — Кельвинов).

Такое излучение, которое должно остаться с древних эпох эволюции Вселенной, если она действительно была горячей, получило название реликтового. Это название было впервые предложено советским астрофизиком И. Шкловским. Электромагнитное излучение со столь малой температурой представляет собой радиоволны с длиной волны в сантиметровом и миллиметровом диапазонах. Решающим экспериментом по проверке того, была ли Вселенная горячей или холодной, являются, следовательно, поиски такого излучения. Если оно есть, Вселенная была горячей, если его нет — холодной.

КАК БЫЛО ОТКРЫТО РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ

 

История открытия реликтового излучения весьма поучительна. Уже в первых работах Г. Гамова, Р. Альфера, Р. Хермана было отмечено, что во Вселенной должно остаться от ранних эпох реликтовое излучение с температурой около 5 градусов абсолютной шкалы Кельвина.

Казалось бы, это предсказание должно было обратить на себя внимание астрофизиков, а те, в свою очередь, должны были заинтересовать радиоастрономов, с тем чтобы попытаться обнаружить предсказанное излучение.

Но ничего подобного не произошло. Историки науки и специалисты до сих пор гадают, почему никто не пытался сознательно искать реликтовое излучение. Прежде чем обращаться к этим догадкам, давайте проследим цепь фактических событий, приведших к самому открытию.

В 1960 году в США была построена радиоантенна, предназначенная для приема отраженных сигналов от спутника “Эхо”. К 1963 году эта антенна уже была не нужна для работы со спутником, и два радиоинженера, Р. Вилсон и А. Пензиас, в лаборатории компании “Белл” решили использовать ее для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупорный отражатель. Вместе с новейшим приемным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса с широких площадок на небе. Телескоп предназначался в первую очередь для измерения радиоизлучения, рождающегося в межзвездной среде нашей Галактики. Эта работа должна была быть интересной, но в общем-то ординарной среди большого количества радиоастрономических наблюдений. Во всяком случае, А. Пензиас и Р. Вилсон не собирались искать никакое реликтовое излучение, да и о самой теории горячей Вселенной они тогда и слыхом не слыхивали.

Первые измерения проводились на длине волны 7,35 сантиметра.

Для точного измерения радиоизлучения Галактики необходимо было учесть все возможные помехи. Такие помехи могут быть разного рода. Так, их вызывает рождение радиоволн в земной атмосфере, радиоизлучает также и поверхность Земли. Кроме того, помехи вызываются движением электрических частиц в антенне, в усилительных электрических цепях и приемнике. Все возможные источники помех были тщательно проанализированы и учтены.

Тем не менее А. Пензиас и Р. Вилсон с удивлением констатировали, что, куда бы их антенна ни была направлена, она воспринимает какое-то излучение постоянной интенсивности. Это не могло быть излучением нашей Галактики, ибо в этом случае интенсивность его менялась бы в зависимости от того, смотрит ли антенна вдоль плоскости Млечного Пути или поперек. Кроме того, в этом случае ближайшие к нам галактики, похожие на нашу, тоже излучали бы на длине волны 7,35 сантиметра. Но такого их излучения обнаружено не было.

Оставалось две возможности: либо это “шумят” какие-то неучтенные помехи, либо это излучение, приходящее из далеких просторов космоса. Подозрения пали на возможные помехи в антенне. Так возникла “загадка антенны”. Предоставим далее слово одному из авторов измерений, Р. Вилсону, рассказывающему, как они проверяли возможность помех, возникающих в антенне. “Таким образом, антенна у нас оставалась единственным возможным источником избыточного шума... Большая часть потерь антенны происходила в ее горловине маленького диаметра, которая была сделана из химически чистой меди. Мы исследовали подобные волноводы, в лаборатории и внесли исправления в расчеты потерь за счет неидеальности поверхностных условий, которую мы обнаружили в таких волноводах. Остальная часть антенны была сделана из склеванных алюминиевых листов, и, хотя мы не ожидали здесь каких-либо неприятностей, мы не могли

исключить возможности потерь в местах склепки. Чтобм проверить это, мы поместили пару голубей в той небольшой части рупора, где она соприкасается с теплой кабиной. Вскоре они подобно своим городским собратьям покрыли всю внутренность белым веществом. Мы выпустили голубей и почистили внутренность антенны, но получили лишь небольшое уменьшение температуры антенны.

В течение этого времени проблема температуры антенны оставалась нерешенной.

Весной 1965 года, закончив измерения потока, мы основательно почистили 20-футовый рупорный ' рефлектор и положили алюминиевые ленты на склепанные стыки. В результате температура антенны даже несколько повысилась. Мы также разобрали горловину антенны и проверили ее, но обнаружили, что она в порядке. Значит, избыточное излучение, фиксируемое радиотелескопом, не связано с помехами в антенне. Оно приходит из космоса, причем со всех сторон с одинаковой интенсивностью”.

Дальше события, приведшие к разгадке проблемы, связаны со случайностями. П. Пензиас во время беседы со своим приятелем Б. Берке о совершенно других вопросах случайно упомянул о загадочном излучении, принимаемом их антенной. Тот вспомнил, что он слышал о докладе П. Пиблса, работавшего под руководством известного физика Р. Дикке. В этом докладе П. Пиблс якобы упоминал об остаточном излучении ранней Вселенной, которое сегодня должно иметь температуру около 10 градусов Кельвина.

А. Пензиас позвонил Р. Дикке, и обе группы встретились. Р. Дикке и его коллегам П. Пиблсу, П. Роллу и Д. Уилкинсону стало ясно, что А. Пензиас и Р. Вилсон обнаружили реликтовое излучение горячей Вселенной. В это время группа Р. Дикке, работавшая в Принстоне. собиралась сама начать готовить аппаратуру для подобных измерений на длине волны 3 сантиметра, но не успела начать измерения. А. Пензиас и Р. Вилсон уже сделали свое открытие.

О дальнейшем Р. Вилсон говорит: “Мы договорились об одновременной публикации двух писем в “Астрофизическом журнале”: одного из Принстона о теории и другого из лабораторий “Белл” о наших измерениях избытка антенной температуры. В нашем письме Арно и я не должны были касаться любого обсуждения космологической теории происхождения фонового излучения, поскольку мы не участвовали в этой работе. Однако мы считали, что результаты наших измерений не зависят от теории и представляют самостоятельный интерес. Тем не менее нам было приятно, что тайна шума, появляющегося в нашей антенне, среди всех прочих объяснений может быть связана с таким важным космологическим явлением. Однако наше настроение в этот период можно было назвать осторожным оптимизмом”.

Эти статьи были опубликованы летом 1965 года.

Первые наблюдения А. Пензиаса и Р. Вилсона показали, что температура реликтового излучения составляет около 3 градусов Кельвина.

В последующие годы многочисленные измерения были проведены на различных длинах волн — от десятков сантиметров до долей миллиметра.

Наблюдения показали, что спектр реликтового излучения соответствует формуле Планка, как это и должно быть для излучения с определенной температурой. Эта температура примерно равна 3 градусам Кельвина.

Так случайно было сделано замечательное открытие нашего века, доказывающее, что Вселенная в начале расширения была горячей. За это открытие А. Пензиасу и Р. Вилсону была присуждена в 1978 году Нобелевская премия по физике.

ПОЧЕМУ РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ НЕ ОТКРЫЛИ РАНЬШЕ?

 

Вернемся теперь к проблеме, относящейся к истории науки, но которой живо интересуются и специалисты — физики и астрофизики. В своей книге “Первые три минуты” известный американский физик С. Вайнберг пишет следующее: “Я хочу попытаться разрешить здесь историческую проблему, которая в равной степени представляется мне загадочной и поразительной. Обнаружение в 1965 году фона космического микроволнового излучения (так иногда называют реликтовое излучение. — И. Н.) было одним из самых важных научный открытий двадцатого века. Почему оно произошло случайно? Или, другими словами, почему не было систематических поисков этого излучения задолго до 1965 года?”

Напомним, что само предсказание существования во Вселенной излучения с температурой несколько градусов было сделано в конце 40-х — начале 50-х годов — за 15 лет до открытия А. Пензиаса и Р. Вилсона.

Может, все дело в том, что тогда не было достаточно чувствительных радиотелескопов, способных его обнару

жить? Мы увидим далее, что это, по-видимому, не так. Такого же мнения придерживается и С. Вайнберг. Но дело даже не в этом.

В истории физики много примеров, когда предсказание нового явления делалось задолго до появления технических возможностей его обнаружения. И тем не менее, если предсказание было обоснованным и важным, то физики всегда о нем помнили. Когда появлялись возможности — предсказание проверялось. С. Вайнберг приводит пример предсказания в 30-е годы существования антипротона — античастицы ядра атома водорода. Тогда физики не смели и мечтать о возможности обнаружить его в эксперименте. Но в 50-е годы, когда появились соответствующие возможности, был построен специальный ускоритель в Беркли для проверки этого предсказания.

Однако до середины 60-х годов радиоастрономы даже не знали о реликтовом излучении и о возможности его обнаружения.

Почему так получилось?

С. Вайнберг называет три причины. Первая — это то, что теория горячей Вселенной создавалась Г. Гамовым и его сотрудниками для того, чтобы объяснить распространенность в природе всех химических элементов их синтезом в самом начале расширения Вселенной. Это оказалось неверным, как мы уже говорили в предыдущем разделе, — тяжелые элементы синтезированы в звездах. Только самые легкие элементы ведут свое происхождение с первых мгновений расширения. Были в первых вариантах теории и другие некорректности. Потом все это было исправлено, но в конце 40-х и в 50-е годы неточности подрывали доверие к теории в целом.

Вторая причина — плохая связь между теоретиками и экспериментаторами. Первые не представляли, может ли реликтовое излучение быть обнаружено с помощью имеющихся наблюдательных средств; вторые не слышали о том, что такое излучение следует искать.

Наконец, третья причина психологическая. Физикам и астрофизикам было очень трудно поверить, что расчеты, относящиеся к первым минутам с начала расширения Вселенной, действительно соответствуют истине. Уж очень велик был контраст между промежутками времени — несколько первых минут и десятки миллиардов лет, отделяющие ту эпоху от нашей.

Еще одну причину, на мой взгляд самую важную, указывает А. Пеизиас в своей лекции, прочитанной при вручении Нобелевской премии. Дело в том, что в первых работах Г. Гамова и его сотрудников и в последующих работах, хотя и было сказано о наличии реликтового излучения, но не было указано, что его можно хотя бы в принпиде обнаружить. Более того, Г. Гамов и его коллеги, по-видимому, считали, что это сделать вообще нельзя! Вот что говврвт А. Пеазиас: “Что же касаемся обнаружения реликтового излучения, то, по-видимому, они считали, что в первую очередь ато излучение проявит себя как увеличение плотности энергии. Этот вклад в приходящий на Землю общий соток .энергии должен быть замаскирован космическими лучами а суммарным оптическим излучением звезд. Обе эти составляющие имеют сравнимые плотности анергии. Мнение о том, что действия трех составляющих с приблизительно равными энергиями дель-зя разделить, можно найти в письме Г. Гамова, написанном Р. Альферу в 1948 году (не опубликовано: любезно представлено мне Р. Альфером): “Температура космического пространства, равная 5° К, объясняется современным излучением звезд (С-циклы). Единственно, что мы можем сказать, это то, что оставшаяся от исходного тепла Вселенной температура не выше 5° К”. Они, по-види-мому, не осознавали того, что своеобразные спектральные характеристики реликтового излучения должны выделять его среди других эффектов”.

В следующем этапе этой истории довелось участвовать мне самому. Получилось так, что начало моих занятий физической комсомологией пришлось на первую половину 60-х годов, незадолго до открытия реликтового излучения. Я тогда только что закончил аспирантуру Московского университета под руководством А. Зельманова. Мой учитель интересовался главным образом механикой движения масс в космологических моделях без упрощающих предположений об их однородном расположении. Его меньше интересовали вопросы конкретной физики процессов в расширяющейся Вселенной. О теории горячей Вселениой я тогда почти ничего не знал.

Незадолго до окончания аспирантуры я заинтересовался следующим вопросом. Мы знаем, как изучают галактики разных типов на разных длинах волн электромагнитного излучения. Если задаться определенными предположениями об эволюции галактик в прошлом и учесть покраснение света от далеких галактик из-за расширения Вселенной, то можно рассчитать, сколько излучения от галактик на каждой длине волны будет сегод

ня во Вселенной. При этом надо учитывать, что светят не только звезды, многие галактики интенсивно излучают радиоволны метровой и дециметровой длины.

Я принялся за соответствующие расчеты. К тому времени, закончив аспирантуру, я пришел работать в группу академика Я. Зельдовича, где прежде всего интересовались именно физикой процессов во Вселенной.

Все расчеты были выполнены вместе с А. Дорошкевичем. В результате мы получили расчетный спектр излучения от галактик, то есть того излучения, которое должно заполнять сегодняшнюю Вселенную, если учитывать только излучение, родившееся, когда возникли галактики и стали светить звезды. В этом спектре излучения очень интенсивна должна быть область метровых радиоволн (так как радиогалактики сильно излучают такие волны) и область видимого света (звезды дают его очень много), а в области сантиметровых, миллиметровых и еще несколько более коротких электромагнитных волн излучение должно быть пониженным.

Так как в группе, в которой мы работали (а тогда она состояла всего из трех человек — нашего руководителя, А. Дорошкевича и меня), усиленно обсуждались варианты горячей и холодной Вселенной, то в статье, которую мы с А. Дорошкевичем подготовили для печати, мы к излучению галактик добавили гипотетическое излучение, оставшееся от ранней Вселенной, если она в действительности была горячей. Это излучение горячей Вселенной должно иметь длины волн порядка сантиметров и миллиметров и приходилось как раз на ту область длин волн, где излучение от галактик понижено! Поэтому реликтовое излучение (если Вселенная была горячей!) в этой области длин волн дол7кно во многие тысячи и даже миллионы раз превышать излучение известных источников во Вселенной.

Значит, его можно наблюдать! Несмотря на то что общее количество энергии в реликтовом излучении сравнимо с энергией света от галактик, волны реликтового излучения имеют совсем другую длину волны и поэтому могут быть обнаружены. Вот что говорит в своей нобелевской лекции А. Пензиас о пашей с А. Дорошкевичем работе.

“Первое опубликованное признание реликтового излучения в качестве обнаружимого явления в радиодиапазоне появилось весной 1964 года в краткой статье А. Р. Дорошкевича и И. Д. Новикова, озаглавленной “Средняя плотность излучения в метагалактике и некоторые вопросы релятивистской космологии”. Хотя английский перевод появился в том же году, но несколько позже, в широко известном журнале “Советская физика — Доклады”, статья по-видимому, не привлекла к себе внимания других специалистов в этой области. В этой замечательной статье не только выведен спектр реликтового излучения как чернотельного радиоволнового явления, но также отчетливо сконцентрировано внимание на двадцатифутовом рупорном рефлекторе лабораторий “Белл” в Кроуфорд Хилл как на наиболее подходящем инструменте для его обнаружения!”

Наша статья осталась не замеченной наблюдателями. Ни А. Пензиас и Р. Вилсон, ни Р. Дикке и его сотрудники до опубликования своих статей в 1965 году о ней ничего не знали, о чем А. Пензиас неоднократно с сожалением мне говорил.

Рассказанное еще не исчерпывает недоразумений, связанных с открытием реликтового излучения.

Оказывается, реликтовое излучение могло быть открыто еще в 1941 году! Канадский астроном Э. Мак-Кел-пар был одним из тех, кто установил существование молекул в межзвездном пространстве. Способ, которым исследовался межзвездный газ, был следующим. Если свет какой-либо звезды на пути к нам проходит сквозь облако межзвездного газа, то атомы и молекулы этого газа вызывают поглощение света звезды на строго определенных длинах волн. Так возникают в спектре линии поглощения межзвездного газа.

Положение линий в спектре зависит от того, какой элемент или какая молекула вызывали поглощение, а также еще от того, в каком состоянии находятся атомы или молекулы.

В 1941 году Э. Мак-Келлар анализировал линии поглощения, вызываемые в спектре звезды 2 Змееносца межзвездными молекулами циана (соединения углерода и азота). Он пришел к выводу, что эти линии (в видимой глазом области спектра) могут возникать только при поглощении света вращающимися молекулами циана. Причем вращение их должно возбуждаться излучением с температурой около 2,3 Кельвина. Ни сам Э. Мак-Келлар, ни кто другой, конечно, не подумали тогда о возможности того, что вращение молекул вызывается реликтовым излучением. Да и сама теория горячей Вселенной тогда еще не была создана!

Только после открытия реликтового излучения были опубликованы в 1966 году три работы: И. Шкловского, Дж. Филда и Р. Тадеуша, в которых показано, что возбуждение вращения межзвездных молекул циана, наблюдавшееся по спектру звезды в созвездии Змееносца, вызвано реликтовым излучением.

Таким образом, еще в 1941 году было обнаружено хоть и косвенное проявление реликтового излучения — его влияние на состояние вращения в межзвездных молекулах циана.

Но и это еще. далеко не конец истории.

Вернемся к проблеме технической возможности открытия реликтового излучения. Возникает вопрос: когда техника уже позволяла это сделать? С. Вайнберг пишет:

“Трудно ответить точно, но мои коллеги-экспериментаторы говорят мне, что наблюдения могли быть проведены задолго до 1965 года, возможно, в середине 50-х, а может быть, даже и в середине 40-х годов”. Так ли это?

Осенью 1983 года мне позвонил сотрудник института общей физики Т. Шмаонов, с которым я до этого не был знаком, и сказал, что он хотел бы побеседовать по вопросам открытия реликтового излучения. Мы встретились в тот же день, и Т. Шмаонов рассказал мне, как он в середине 50-х годов под руководством известных советских радиоастрономов С. Хайкина и Н. Кайдановского проводил измерения радиоволн, шедших из космоса, на длине 3,2 сантиметра. Эти измерения проводились с помощью рупорной антенны, подобной той, которая была использована много лет спустя А. Пензиасом и Р. Вилсоном. Т. Шмаонов со всей тщательностью изучил возможные помехи. Конечно, в его распоряжении тогда не было еще столь чувствительных приемников, которые были потом у американских радиоастрономов. Результаты измерений Т. Шмаонова были опубликованы в 1957 году в его кандидатской диссертации и в советском журнале “Приборы и техника эксперимента”. Вывод из этих измерений был таков: “Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона... равна 4° ± 3°К”. Т. Шмаонов отмечал независимость интенсивности излучения от направления и от времени. Хотя ошибки измерений Т. Шмаонова велики и говорить о какой-либо надежности цифры 4°К не приходится, мы понимаем теперь, что Т. Шмаонов измерял именно реликтовое излучение. К сожалению, ни сам Т. Шмаонов, ни его руководители, ни другие радиоастрономы, которым были известны результаты его измерений, ничего не знали о возможности существования реликтового излучения п не придали должного значения результатам этих измерений. Их довольно быстро забыли. Когда в 1963 и в 1964 годах после выполнения наших с А. Дорошковичем вычислений мы ходили к многим советским радиоастро* номам с вопросом: не известны ли им результаты каких-либо измерении фонового радиоизлучения на сантиметровых или более коротких волнах? — никто из них не вспомнил об измерениях Т. Шмаонова!

Забавно, что даже сам автор измерений не придал им должного значения не только в 50-х, что легко объяснить, но даже после опубликования открытия реликтового излучения в 1965 году А. Пензиасом и Р. Вилсоном. Правда, в то время Т. Шмаонов работал уже совсем в другой области. Только в 1983 году в результате полуслучайных разговоров было обращено внимание на старые измерения, и Т. Шмаонов выступил по этому поводу с докладом на Бюро отделения общей физики и астрономии АН СССР. Это было спустя 27 лет после самих измерений и 18 лет после опубликования результатов А. Пензиаса и Р. Вилсона.

Но даже это еще не все. Когда автор заканчивал эту книгу, он узнал, что были еще измерения японских радиоастрономов в начале 50-х годов, когда якобы также обнаружили фоновое излучение. Эти работы, так же как и работы Т. Шмаонова, ни тогда, ни многие годы спустя не обратили на себя внимания и не были практически никому известны.

Вот как причудлива фортуна. И тем не менее вся эта история весьма поучительна. Увидеть какое-либо явление — еще не значит его открыть. Надо осознать значение обнаруженного, надо правильно его объяснить. Конечно, тут играют роль и стечение многих обстоятельств, и просто удача. Но успех никогда не приходит совершенно случайно. Он требует огромного труда, больших знаний, настойчивости и в самой работе, и в доведении ее результатов до сознания других.

ПУТЕШЕСТВИЕ В ДАЛЕКОЕ ПРОШЛОЕ

Реликтовое излучение не возникло в каких-либо источниках, подобно свету звезд или радиоволнам, родившимся в радиогалактиках. Реликтовое излучение суще

ствовало с самого начала расширения Вселенной. Оно было в том горячем веществе Вселенной, которое расширялось от сингулярности.

Если подсчитать общую плотность энергии, которая сегодня содержится в реликтовом излучении, то она окажется в 30 раз больше, чем плотность энергии в излучении от звезд, радиогалактик и других источников, вместе взятых. Можно подсчитать число фотонов реликтового излучения, находящихся в каждом кубическом сантиметре Вселенной. Оказывается, что концентрация этих фотонов 500 штук в см3.

Напомним, что средняя плотность обычного вещества во Вселенной около 10-30 г/см3. Это значит, что, если бы мы “размазали” все вещество равномерно в пространстве, то в одном кубическом метре был бы всего один атом водорода — наиболее распространенного элемента Вселенной. В то же время в кубическом метре содержится около миллиарда фотонов реликтового излучения.

Таким образом, кванты электромагнитных волн, эти своеобразные частички, распространены в природе гораздо больше, чем обычное вещество. Реликтовых фотонов в миллиард раз больше, чем тяжелых частиц протонов. Если мы учтем, помимо водорода, и другие химические элементы, в состав ядер которых входят не только протоны, но и нейтроны, то это практически ничего не изменит в нашей оценке, так как водород — главный элемент в природе. Итак, 109 реликтовых фотонов на одну тяжелую частицу.

Мы знаем, что сегодня в каждом кубическом сантиметре межгалактического пространства около 500 фотонов, летящих с предельной скоростью во всех направлениях. Каждый фотон имеет свою энергию, соответствующую его частоте. При температуре 3° Кельвина большинство фотонов имеет энергию 10-15 эрг каждый. Значит, в каждом кубическом сантиметре имеется энергия реликтового излучения, равная произведению 10-15 эрг на 500, то есть 5 *10-13 эрг. Согласно закону Эйнштейна каждой энергии соответствует масса. Энергии 5*10-13 эрг соответствует масса 5 * 10-34 грамма. Таким образом, в каждом кубическом сантиметре в наши дни есть 5 • 10-34 грамма реликтового излучения.

Напомним, что обычного вещества на каждый кубический сантиметр приходится в среднем 10-30 грамма. Значит, по массе вещества в две тысячи раз больше, чем реликтового излучения. Поэтому, хотя по числу штук фотонов гораздо больше, по общей массе обычное вещество сильно преобладает над реликтовым излучением. Масса реликтового излучения пренебрежимо мала.

Проследим, что было и с теми, и с другими частицами в прошлом.

В обозримом прошлом ни те ни другие частички не рождались и не исчезали. Здесь необходимы некоторые уточнения. Первое из них относится к реликтовым фотонам. Сегодняшняя Вселенная практически прозрачна для реликтового излучения. Ясно, что реликтовые фотоны в современной Вселенной в подавляющем большинстве не взаимодействуют с веществом и не могут из-за этого меняться в числе. В далеком прошлом, когда плотность вещества была велика, была велика и температура. Вещество Вселенной было ионизовано и являлось почти однородной плазмой. Оно тогда было непрозрачным для излучения. Реликтовые фотоны активно взаимодействовали с веществом. Но сколько фотонов в какой-то малый промежуток времени поглощалось в толще вещества, столько же этим горячим веществом и рождалось! Существовало, как говорят, равновесие между излучением и веществом. Поэтому и в этот период соотношение — миллиард реликтовых фотонов на один протон — оставалось справедливым.

Второе уточнение относится к протонам.

В своем далеком прошлом, в самые первые мгновения после начала расширения, во Вселенной было так горячо, что при температуре больше десяти тысяч миллиардов градусов столкновение частиц рождало протоны и их античастицы — антипротоны, нейтроны и антинейтроны. Ко всему этому мы еще вернемся. Пока мы не обращаемся к экзотическим первым мгновениям, можно считать, что и реликтовые фотоны и тяжелые частицы являются не рождающимися и не исчезающими.

Помня это, отправимся в прошлое. В прошлом плотность числа и тех и других частиц была, конечно, больше, чем сейчас, и возрастали эти плостности при углублении в прошлое в одинаковое количество раз. Значит, остается неизменным их отношение: один протон на миллиард фотонов.

Но между фотонами и тяжелыми частицами есть огромная разница. Масса тяжелых частиц все время неизменна. А энергия фотонов с расширением Вселенной уменьшается из-за красного смещения. Раз меняется энергия, значит, меняется и масса каждого фотона (эта масса целиком связана с энергией его движения). Раньше каждый фотон был энергичнее, а значит, и тяжелее.

В некоторый момент в прошлом суммарная масса миллиарда потяжелевших фотонов, приходящихся на один протон, сравнивается с массой этого протона.

В этот момент в прошлом в каждом кубическом сантиметре масса обычного вещества и масса реликтового излучения сравниваются. Произошло это, когда плотность вещества (и равная ей тогда плотность излучения) была 10-20 г/см3, температура излучения и вещества тогда была около 6 тысяч градусов. Реликтовое излучение было не радиоволнами, а видимым светом. Конечно, в эту эпоху не было отдельных небесных тел, они возникли существенно позже. А еще раньше?

Еще раньше масса реликтового излучения превосходила массу обычного вещества!

Вот такое было совершенно необычное состояние. Его называют эрой фотонной плазмы.

То, о чем мы будем говорить в последующих строках, покажется кадрами из фантастического фильма. Мы подойдем к моменту начала расширения на ничтожные доли секунды — меньше одной стотысячной доли — и встретимся с совершенно необычными процессами.

На ранних стадиях расширения основную долю массы физической материи во Вселенной составляет свет и, анализируя эту стадию, мы можем на время забыть о ничтожной доли примеси к квантам света частиц обычного вещества, того вещества, которое играет основную роль в наше время, из которого состоят звезды, планеты и мы сами.

Продолжим путешествие в прошлое к сингулярности. Например, через одну секунду после начала расширения температура была десять миллиардов градусов. При меньшем времени температура еще больше. При такой огромной температуре происходят процессы рождения и аннигиляции элементарных частиц. Например, процессы рождения пар электронов и позитронов при столкновении энергичных фотонов и аннигиляции пар электронов и позитронов с превращением в кванты света — фотоны.

Для рождения пары электронов и позитронов надо затратить энергию, равную как минимум сумме масс этих частиц, умноженную на квадрат скорости света (формула Е = МС2). Следовательно, такие процессы могут идти лишь при температуре выше десяти миллиардов градусов, когда много квантов света обладает подобными энергиями. Столкновения электронов и позитронов могут вести к рождению нейтрино и антинейтрино, возможна также и обратная реакция — столкновение нейтрино и антинейтрино рождает пару электрон — позитрон. Когда температура еще выше, возможно рождение более тяжелых частиц: протонов и антипротонов, нейтронов и антинейтронов, мезонов и других.

При температурах выше десяти тысяч миллиардов градусов существовало примерно в равных количествах множество сортов частиц (и в равных количествах их античастиц), в том числе и с большой массой. По мере расширения температура падала, и энергии частиц не хватало для рождения пар тяжелых частиц и античастиц, например, таких, как протон и антипротон. Эти частицы “вымирали”.

При дальнейшем уменьшении температуры “вымирают” разные виды мезонов.

Очень важное событие происходит при времени около 0,3 секунды после начала расширения. В этот момент присутствуют кванты света, электроны и позитроны, нейтрино и антинейтрино (для простоты мы говорим только об одном сорте нейтрино — об электронных нейтрино).

При высокой температуре нейтрино и антинейтрино превращаются в электроны, позитроны и обратно.

Однако нейтрино — частицы, очень слабо взаимодействующие с другими объектами, для них даже плотное вещество прозрачно. И вот при 0,3 секунды после начала расширения все вещество Вселенной, включая и электроны и позитроны, становится прозрачным для нейтрино, они перестают взаимодействовать с остальным веществом. В дальнейшем их число не меняется, и они сохраняются вплоть до наших дней, только их энергия должна упасть из-за красного смещения при расширении точно так же, как температура квантов электромагнитного излучения.

Таким образом, в нашу эпоху во Вселенной, помимо реликтового электромагнитного излучения, должны существовать реликтовые нейтрино и антинейтрино. Энергия этих частиц должна равняться примерно энергии квантов сегодняшнего реликтового электромагнитного излучения, и концентрация их также примерно совпадает с концентрацией реликтовых квантов.

Экспериментальное обнаружение реликтовых нейтрино представляло бы огромный интерес. Ведь для нейтрино Вселенная прозрачна, начиная с долей секунды после начала расширения. Обнаружив реликтовое нейтрино, мы

могли бы непосредственно заглянуть в далекое прошлое Вселенной, информацию о которой несут эти частицы.

К сожалению, обнаружение нейтрино столь низких энергий, какими должны быть реликтовые нейтрино, пока практически невыполнимая задача.

В связи с этим напомним, что на наших глазах рождается нейтринная астрономия. Мы стоим на пороге систематического исследования потоков нейтрино, рождающихся при ядерных реакциях вблизи центра Солнца. Эти нейтрино позволяют непосредственно заглянуть в центр Солнца, так как вся масса Солнца для них абсолютно прозрачна." Нейтринное “просвечивание” Солнца позволит уточнить наши знания о его внутреннем строении. Точно так же в будущем астрофизикам предстоит осуществить нейтринное “просвечивание” нашей Вселенной.

Итак, мы посмотрели, что было во Вселенной с веществом и излучением в первую секунду. Как ни фантастична кажется возможность рассчитывать процессы в первую секунду с начала расширения, но современная физика позволяет это делать с полной надежностью.

ПЕРВЫЕ ПЯТЬ МИНУТ

В известной песенке поется:

Пять минут, пять минут, Разобраться если строго, Даже в эти пять минут Можно сделать очень много—Первые пять минут в жизни нашей Вселенной... Они определили основные ее особенности, в том числе и те, которые проявились миллиарды лет спустя, в наше время.

Процессы, которые последовали за уже рассмотренными нами первыми мгновениями и которые происходили в эти минуты, полные драматизма и действия грозных ядерных сил, определили существенные черты химического состава сегодняшней Вселенной.

Благодаря этим процессам звезды обладают достаточным запасом ядерной энергии. Поэтому то, что звезды светят, также есть следствие разгула стихий Вселенной в первые пять минут расширения.

Звезды и другие небесные тела возникли из небольшой примеси обычного вещества, о которой мы на время “забыли”, рассматривая в предыдущем разделе фотоны и пары частиц — античастиц.

Вернемся теперь к этой небольшой примеси обычного вещества, которое находится в первые доли секунды после начала расширения в “кипящем котле” нейтрино и антинейтрино, электронов и позитронов и световых квантов. Оказывается процессы, в которых участвует обычное вещество, чрезвычайно чувствительны к тем условиям, которые господствовали в первые секунды расширения. Эти процессы обусловили химический состав вещества, из которого много позже, уже в эпоху, близкую к нашей, формировались галактики и звезды. Поэтому химический состав звездного вещества служит чувствительнейшим

индикатором физических условий в начале космологического расширения.

Рассмотрим процессы, в которых участвует обычное вещество. В каком состоянии оно находится?

Прежде всего при температуре свыше 10 миллиардов градусов не может быть нейтральных атомов — все вещество полностью ионизовано и является высокотемпературной плазмой. Более того, при подобной температуре не могут существовать сложные атомные ядра. Сложное ядро было бы моментально разбито окружающими энергичными частицами. Поэтому тяжелыми частицами вещества оказываются нейтроны и протоны. Эти частицы подвергаются воздействию “кипящего котла” энергичных электронов, позитронов, нейтрино и антинейтрино.

Взаимодействие с этими частицами заставляет нейтроны и протоны быстро превращаться друг в друга. Эти реакции устанавливают равновесие между нейтронами и протонами. Когда температуры достаточно велики, больше ста миллиардов градусов, концентрации нейтронов и протонов будут примерно равны.

В ходе расширения Вселенной с понижением температуры становится все больше протонов и меньше нейтронов. Равенство концентраций нарушается, потому что масса нейтрона больше массы протона и образование протона энергетически более выгодно, а значит, вероятность образования протона больше, чем нейтрона. Если бы реакции продолжались и после нескольких секунд с начала расширения, то через несколько десятков секунд количество нейтронов стало бы ничтожным.

Но скорость реакции резко зависит от температуры. С убыванием ее уменьшается скорость этих реакций, и они почти прекращаются после первых секунд расширения. Относительное содержание нейтронов “застывает” на значении около 15 процентов от всех тяжелых частиц.

После этого, когда температура падает до миллиарда градусов, становится возможным образование простейших сложных ядер. Теперь энергии квантов и других частиц но хватает для того, чтобы разбивать сложное ядро. Все имеющиеся нейтроны захватываются протонами, давая сначала дейтерий, а потом реакции с участием дейтерия приводят в конце концов к ядрам атома гелия. Образуется также очень небольшое количество изотопа гелия-3, дейтерия и лития.Более сложных ядер в этих условиях практически совсем не образуется. Дело в том, что образование таких элементов в сколько-нибудь значительных количествах может происходить в результате парных столкновений ядер и частиц, уже имеющихся. Это значит, что образование более сложных ядер может начинаться при столкновении ядер гелия-4 с нейтронами, протонами или с теми же ядрами гелия-4. Но эти столкновения не ведут к образованию сложных ядер с относительной атомной массой 5 или 8, потому что таких устойчивых ядер нет!

Указанные причины ведут к тому, что синтез элементов в начале расширения ограничивается только легкими элементами и заканчивается примерно через 300 секунд после начала расширения, когда температура падает ниже миллиарда градусов и энергия частиц уже недостаточна для ядерных реакций. Реакции, приведшие к образованию гелия, подобны тем, что происходят при взрыве водородной бомбы. Образование элементов тяжелее гелия происходит в звездах уже в нашу эпоху. В звездах вещество находится достаточно долго, и даже не очень быстрые реакции успевают пройти. Синтез элементов тяжелее железа происходит во взрывных процессах (во вспышках сверхновых звезд). Газ, прошедший стадию нуклеосинтеза в звездах, затем частично выбрасывается из них в окружающее пространство при медленном истечении с поверхности звезд в при взрывах. Из этого газа потом формируются звезды последующих поколений и другие небесные тела.

Вернемся к синтезу легких элементов в начале космологического расширения. Так как почти все нейтроны пошли на создание атомов гелия, то нетрудно подсчитать, сколько образуется гелия. Каждый нейтрон входит в состав ядра гелия-4 в паре с протоном, поэтому доля гелия по весу будет равной удвоенной концентрации нейтронов, то есть 30 процентов.

Итак, по истечении примерно пяти минут с начала расширения вещество состоит на 30 процентов из ядер атомов гелия и на 70 процентов из протонов — ядер атома водорода. Такой химический состав вещества остается в дальнейшем неизменным, вплоть до образования галактик и звезд, когда процессы неуклеосинтеза начинают идти в недрах звезд.

Подтверждают ли наблюдения вывод о химическом составе дозвездного вещества?

СКОЛЬКО ГЕЛИЯ В ПРИРОДЕ?

Гелия очень мало на Земле. Но это связано со специфическими свойствами этого элемента и с теми условиями, в которых формировалась и эволюционировала Земля. Гелий, будучи очень летучим и инертным газом, покинул вещество Земли. Однако астрономы видят его повсюду, хотя он и очень трудно наблюдаем обычными средствами спектрального анализа.

Его обнаруживают в горячих звездах, в больших газовых туманностях, которые окружают молодые горячие звезды, во внешних облочках Солнца, в космических лучах — потоках частиц большой энергии, приходящих к нам на Землю из космоса. Гелий оказался в самых далеких от нас объектах Вселенной — квазарах.

Весьма примечательно, что где бы его ни обнаруживали, почти всегда его по массе около 30 процентов, а стальные 70 процентов составляет водород. Примесь других химических элементов невелика. Доля их меняется от объекта к объекту, а доля гелия удивительно постоянна.

Вспомним, что именно эти 30 процентов гелия предсказываются в первичном веществе теорией горячей Вселенной. Если большая часть гелия была синтезирована в первые минуты расширения Вселенной, а другие, более тяжелые элементы синтезируются значительно позже в звездах, то именно так и должно быть — гелия везде около 30 процентов, а других элементов по-разному, в зависимости от местных условий их синтеза в звездах и последующего выбрасывания газа из звезд в космическое пространство.

Во время ядерных реакций в звездах гелий тоже синтезируется. Но доля таким образом образовавшегося гелия мала по сравнению с образовавшимся в начале расширения Вселенной.

А нельзя ли все же предположить, что все наблюдаемые 30 процентов гелия образовались тоже в звездах?

Нет, это решительно невозможно. Прежде всего при образовании гелия в звездах выделяется большая энергия, заставляющая звезды интенсивно светить. Если бы такое количество гелия было в прошлом образовано в звездах, излученный ими свет с высокой температурой должен был бы наблюдаться во Вселенной, чего на самом деле нет.

К этому можно добавить, что наблюдения самых старых звезд, которые заведомо формировались из первичного вещества, показывают, что в них гелия тоже 30 процентов. Значит, практически весь гелий Вселенной был синтезирован в самом начале расширения мира.

Так химический анализ вещества сегодняшней Вселенной дает прямое подтверждение правильности нашего понимания процессов, которые протекали в первые секунды и минуты после начала расширения всего вещества.

ТРИСТА ТЫСЯЧ ЛЕТ ЭРЫ ФОТОННОЙ ПЛАЗМЫ И НАША ЭРА

В первые 100 секунд расширение в расширяющейся плазме происходил еще один вид процессов. Дело в том, что по прошествии 10 секунд от сингулярного состояния температура во Вселенной упала до нескольких миллиардов градусов. До этого во Вселенной было много электронов и позитронов, рождавшихся при энергичных столкновениях частиц. Теперь энергия столкновения уже недостаточна для их рождения. Электроны и позитроны, сталкиваясь друг с другом, аннигилируют, превращаясь в фотоны. Вся энергия, которая содержалась в электронах и позитронах, переходит в фотоны реликтового излучения.

Проходят минуты, температура продолжает падать с расширением. Закончилась аннигиляция электронов и позитронов, затухли ядерные реакции в веществе.

Это были последние активные процессы, происходившие в горячей ранней Вселенной. В ней стало слишком холодно (холоднее миллиарда градусов!), и бурные процессы стали невозможны.

Закончился буйный фейерверк жизни молодой Вселенной, и наступил длительный период спокойствия. Он продолжался около 300 тысяч лет.

Напомним, что в этот период расширяющаяся плазма все же очень горяча и полностью ионизована. Она непрозрачна для реликтового излучения, которое по массе превосходит непрозрачную плазму. В этой смеси плазмы и света имеются небольшие колебания, которые можно назвать “фотонным звуком”, так как упругой силой, их вызывающей, является давление света.

Вот и все интересное, что было в эту “тихую” эпоху.

Так продолжалось до того времени, когда температура упала примерно до четырех тысяч градусов. Эта температура уже достаточно низка, и ионизованная плазма начинает превращаться в нейтральный газ. Казалось бы,

событие это не столь уж важное, но оно явилось поворотным в дальнейшей судьбе Вселенной.

До этого момента ионизованный газ был совершенно непрозрачен для реликтового излучения. После превращения газа (а это в основном водород) в нейтральный, он практически совершенно прозрачен для подавляющей части фотонов реликтового излучения. С этого момента реликтовое излучение отделилось от вещества. Вся Вселенная для него прозрачна. Фотоны распространяются сквозь вещество, которое становилось все более разреженным из-за расширения и все более холодным, практически пе поглощаясь.

Ну и почему же это так важно? — может спросить читатель. Дело в том, что только теперь из этого остывшего нейтрального газа могут формироваться небесные тела.

За эрой фотонной плазмы наступает эра формирования структуры Вселенной.

Можно считать, что началом современной эпохи в истории Вселенной был процесс образования отдельных гигантских по размерам комков в первоначальном, почти однородном веществе, комков, из которых впоследствии возникли галактики и их скопления. Образование комков происходило под действием сил гравитации, и весь процесс получил название “гравитационной неустойчивости”.

Еще у И. Ньютона были высказывания о том, что однородное вещество должно собраться в комок или в отдельные комки под влиянием взаимного тяготения частичек. И. Ньютон писал: “Если бы все вещество нашего Солнца и планет и все вещество Вселенной было равномерно рассеяно по всему небу и каждая частица обладала бы врожденным тяготением ко всему остальному и если бы все пространство, по которому было рассеяно это вещество, было бы тем не менее конечным, то все вещество на наружной стороне этого пространства благодаря своему тяготению стремилось бы ко всему веществу, находящемуся внутри пространства, и как следствие упало бы в середину полного пространства и образовало бы там одну большую сферическую массу. Однако если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда не собралось бы в одну массу;

часть его могла бы собраться в одну массу, а часть — в другую, так что образовалось бы бесконечное число больших масс, разбросанных на больших расстояниях друг от друга по всему этому бесконечному пространству. Так могли образоваться Солнце и неподвижные звезды”. Значит, однородное вещество стремится под действием тяготения распасться на отдельные комки. Это “стремление” имело место с самого начала расширения однородного вещества Вселенной. Но оно почему-то не распалось! Действительно, если бы такой процесс произошел в самом начале расширения Вселенной, то ничего похожего на галактики и звезды при этом не возникло бы. Ведь вещество было чудовищно плотным. Возникшие в нем комки должны были быть еще плотнее. Такого во Вселенной мы не наблюдаем. Во всяком случае, не наблюдаем в больших количествах. Галактики обладают скромной средней плотностью. Значит, они возникли в эпоху сравнительно близкую к нам, когда расширяющееся вещество Вселенной стало достаточно разреженным. Только тогда проявилась гравитационная неустойчивость. До этого что-то мешало “сработать” этому механизму. Это “что-то” было давлением реликтового излучения.

Давление реликтовых фотонов огромно. Если где-то случайно возникал сгусток плазмы вместе с фотонами реликтового излучения, то силы тяготения, конечно, стремились усилить этот сгусток, в полном соответствии с описанием И. Ньютона. Но этим силам противостояли мощные силы давления фотонов, для которых плазма была непрозрачной. Они распихивали сгусток, и гравитационная неустойчивость не могла проявиться.

Только после превращения горячей плазмы в нейтральный газ стало возможным проявление гравитационной неустойчивости. Газ теперь прозрачен для реликтового излучения. Возникший комок газа в ходе сжатия силами тяготения не испытывает сопротивления давления фотонов, они свободно выходят из зарождающегося сгустка. Только силы газового давления могут оказывать сопротивление. Но это давление гораздо слабее фотонного, и если сгусток достаточно велик по размеру, то силы газового давления не могут побороть тяготение. Проявляется гравитационная неустойчивость.

Прежде чем познакомиться с тем, как конкретно проявляется гравитационная неустойчивость, нам придется обратиться к еще одной загадке, вставшей на пути исследователей.


- Введение

- Глава 1-1. Черные дыры - что это такое?

- Глава 1-2. Вокруг черной дыры

- Глава 1-3. Энергия из гравитационной бездны

- Глава 1-4. Поиски черных дыр

- Глава 1-5. Черные дыры и кванты

- Глава 2-1. Вселенная после взрыва

- Глава 2-2. Механика Вселенной

- Глава 2-3. Горячая Вселенная

- Глава 2-4. Нейтринная Вселенная

- Глава 2-5. У границ известного

- Заключение

© ImUgh & leksus copyright 2005-2010 all rights reserved