Астрономия для любителя Астрономия
Главная
Новости

Астрономия

Солнечная система

Звездное небо

Читальный Зал

Ссылки

Карта сайта



e-mail для связи:
admin(на)astronomus.ru


Вулканизм на телах Солнечной системы

Исследование вулканизма на телах Солнечной системы в последние годы привело к массе экзотических открытий и неожиданных находок. Примечательно, что самые захватывающие события и явления связаны с телами, находящимися во внешней части Солнечной системы, точнее - со спутниками планет-гигантов.

Обнаружение реликтовых вулканических построек на поверхности Марса и Венеры и даже некоторые признаки современного венерианского вулканизма не вызвали столь сильного удивления, поскольку представлялись как бы закономерным аналогом активности недр Земли, иногда смещенным по времени. Настоящей сенсацией было открытие действующих вулканов на сравнительно небольшом спутнике Юпитера - Ио. Хотя некоторые факторы, известные до полетов космических аппаратов в область Юпитера, могли бы натолкнуть на мысль о существовании активности недр Ио. Средняя плотность Ио (3,53 г/см3) указывает на то, что спутник практически целиком состоит из горных пород в отличии от его ближайших соседей - Европы, Ганимеда и Каллисто. Телескопические наблюдения выявили распространяющийся по орбите Ио "газовый шлейф", в составе которого оказались сера, натрий, калий и кислород (как мы теперь знаем это - продукты выбросов из недр спутника). И тем не менее, когда снимки, полученные с космического аппарата "Вояджер-1", продемонстрировали существование на Ио около десятка действующих вулканов, это стало событием в исследованиях Солнечной системы. Температура в центрах извержений (эруптивных центрах) достигала 700 К и выбросы со скоростью 1000 м/с поднимались на высоту до 300 км над поверхностью. Анализ всей серии изображений показал, что каждую секунду действующие эруптивные центры выбрасывают около 100000 тонн вещества. Этого количества достаточно для того, чтобы покрыть всю поверхность Ио слоем в несколько десятков метров за несколько миллионов лет. По-видимому, этим объясняется полное отсутствие ударных кратеров на изученной поверхности спутника: погребение ударных структур под слоем вулканического материала идет с большей скоростью, чем их появление в результате падения метеороидов или комет.

На рис. 12 показаны два изображения "обратного" (по отношению к Юпитеру) полушария Ио. Левое изображение составлено по снимкам, полученным в 1979 г. во время пролета аппаратов "Вояджер". Снимок, расположенный справа, получен 17 лет спустя в сентябре 1996 г. космическим аппаратом "Галилео". Нетрудно обнаружить, что за это время детали поверхности претерпели многочисленные изменения. Подтверждением постоянной активности эруптивных центров служат результаты измерений температуры одного из них. С июня 1996 г., когда были проведены первые оценки, температура предполагаемого "жерла" возросла на 300 К и к началу сентября достигла уже почти 1000 К.. Анализ топографических особенностей поверхности Ио приводит к заключению, что наблюдаемые формы рельефа вероятнее всего образованы потоками лавы из жидкой серы, имеющей температуру плавления 390 К.

Полушарие спутника ИО
Снимки одного и того же полушария Ио, полученные с разницей по времени в 17 лет (1979г. - слева и 1996г. - справа). В результате постоянной вулканической деятельности недр этого спутника Юпитера появились многочисленные изменения деталей поверхности.

В настоящее время наиболее вероятным энергетическим источником вулканизма на Ио считают приливный разогрев недр спутника. Как и большинство спутников в Солнечной системе, Ио обращается вокруг Юпитера синхронно, т.е. период осевого вращения спутника равен периоду его обращения вокруг планеты. Ио находится на орбите близко расположенной к Юпитеру, в результате чего образуется приливной горб величиной в несколько километров. Небольшой эксцентриситет орбиты (0,004) приводит к явлениям, аналогичным либрациям Луны в процессе ее вращения вокруг Земли. Одновременно, под влиянием соседних Европы и Ганимеда возникают возмущения эксцентриситета орбиты, что вызывает периодические изменения амплитуды приливных деформаций в коре Ио. Такая постоянная пульсация предположительно тонкой коры (толщиной не более 20 - 30 км) обеспечивает энерговыделение, достаточное для расплава недр спутника, что и выражается в интенсивной вулканической активности. Оценки, сделанные на основе измерений теплового потока, исходящего из "горячих" областей Ио, показывают, что приливной механизм способен генерировать до 108 мегаватт энергии, что более, чем в 10 раз превышает суммарную величину энергии, потребляемой всем человечеством на Земле.

Модель приливного разогрева недр в некоторой степени применима и к Европе, место которой в системе Юпитера также предполагает существование пульсирующих деформаций этого спутника. Средняя плотность Европы несколько меньше, чем средняя плотность Луны и составляет 2,97 г/см3. Эта величина связана с тем, что спутник примерно на 20% по массе состоит из водяного льда, образующего мощную (до 100 км) кору и частично расплавленную (водно-ледяную) мантию, и на 80% из силикатных пород, составляющих разогретое ядро. На поверхности Европы нет эруптивных центров и следов недавних выбросов. В то же время, практически нет и ударных кратеров - обнаружено всего лишь три образования размером больше 5 км, имеющих определенно экзогенное происхождение. На соседних Каллисто и Ганимеде плотность ударных кратеров во много раз выше и в отдельных местах приближается к плотности кратеров на Луне. Следовательно, процессы погребения ударных структур на Европе проходят довольно быстро, хотя и не столь бурно, как на Ио.

Свидетельством значительной активности недр служит, в частности, глобальная сеть тектонических разломов, покрывающая всю ледяную поверхность Европы. Трещины, имеющие ширину от 20 до 200 км, простираются на тысячи километров. Перепады высот на поверхности в среднем не превышают 100 м. Подобное отсутствие выраженных форм рельефа (поверхность Европы выглядит как покрытый льдом водоем), по-видимому, служит указанием на существование подповерхностного глобального океана жидкой воды. Его предполагаемая глубина может достигать 50 км, что делает Европу единственным, исключая Землю, телом Солнечной системы, где вода в жидком состоянии встречается в таком огромном объеме.

Другим доказательством движения вещества из недр спутника служит наличие в поверхностном слое примеси горных пород, относящихся, как было указано выше, к составу ядра. На рис. 13 представлены изображения Европы в видимых (левое) и инфракрасных (правое) лучах. Левое изображение составлено по снимкам, полученным во время пролета аппаратов "Вояджер". Правое, инфракрасное изображение получено летом 1996 г. космическим аппаратом "Галилео". Наиболее яркие области на этом изображении соответствуют материалу с большей теплоотдачей, то есть имеющему значительную примесь горных пород. Соответственно, на левом изображении эти области имеют низкое альбедо (т.е. отражательную способность поверхности) по сравнению с альбедо поверхности чисто ледяного состава. Наличие на поверхности вещества из ядра спутника служит общей характеристикой мощности внутренних процессов на Европе, которые способны обеспечить прорыв силикатного материала из глубины через 50-километровый слой водной мантии и 100-километровый слой ледяной коры.

Общий вид Юпитера
Изображение Европы в видимых (слева) и инфракрасных (справа) лучах. Снимки составлены по результатам съемок космического аппарата "Галилео" (1996г.).

Не менее, а возможно, еще более экзотическим и загадочным примером может служить вулканическая активность спутника Нептуна - Тритона. Для обозначения этих процессов пришлось ввести специальный экзотический термин - криовулканизм, т.е. вулканизм при низких температурах. Внешние проявления криовулканизма потрясают воображение: из поверхности, покрытой замерзшим азотом и имеющей температуру около 38 К, выбивается гейзер высотой около 8 км при толщине столба выброса от 20 м до 2 км. На снимках, сделанных космическим аппаратом "Вояджер-2" в 1989 г., были зафиксированы два действующих извержения. Выбросы развеивались ветром с востока на запад на значительное расстояние (более 100 км) и, осаждаясь на поверхность, оставляли следы в виде протяженных темных полос-шлейфов. По таким шлейфам в южной полярной области спутника было отождествлено еще около 50 ранее действовавших извержений.

Тритон имеет диаметр около 2700 км и его средняя плотность составляет 2,0 г/см3. По массе спутник состоит на 70% из силикатов и на 30% из льдов, в состав которых входят N2, CO и CH4. Для объяснения криовулканизма, наблюдаемого на Тритоне, предложено несколько механизмов, включая и описанный выше приливной разогрев. Предполагают также, что криовулканические процессы имеют приповерхностный источник энергии, когда при многослойной структуре верхних слоев льда в одном из слоев происходит аккумуляция слабого здесь солнечного тепла. Постепенно накапливаясь, внутреннее давление достигает уровня, достаточного для гигантского выброса. Какова природа криовулканизма в действительности, еще предстоит решить.

 


- Происхождение CC

- Строение СС

- Объекты СС

- Движение тел СС

- Химический состав СС

- Ударные процессы СC

- Вулканизм на телах СС

- Жизнь в СС

© ImUgh & leksus copyright 2005-2010 all rights reserved